|
Two pygmy hippos (Choeropsis liberiensis) photographed at the Columbus Zoo by yours truly. The evolutionary origin of such mammals
has been long unknown, although a recent study in Nature Communications proposes an answer.
|
A new
paper published in the journal
Nature Communications has shed crucial light on the ancestry of Africa’s sub-Saharan semiaquatic giant, the hippopotamus. The origins of these animals have long been shrouded in ambiguity but, according to the recent study, can now be definitively placed with the fossil ungulate family Anthracotheriidae. First found in coal deposits, the anthracotheres were aquatic browsers dating back to the late Eocene in Asia and North America.
1 Anthracotheres were among the first animals to colonize Africa, although their range was quite diverse throughout the Oligocene and Miocene epochs.
1 Morphological features such as the flaring snout, wide heavy feet, hippo-like lower jaw, cetacean-like premolars, and prominent tusks of anthracotheres like Elomeryx and Merycopotamus have been cited in support of a link with Hippopotamidae and Whippomorpha (the clade uniting whales and hippos) as a whole.1,2 The swamp-dwelling tendency of anthracotheres indicated by the presence of their fossil remains in remnant coal seams likely hints at what stimulated differences in morphology and specilization between the otherwise closely related whales and hippos. Stem-whales most probably evolved in coastal environments promoting a carnivorous diet whereas the anthracotherian hippo-progenitors inhabited habitats in which they were restricted to feeding on aquatic plants. As some extant ungulates like pigs occasionally exploit a carnivorous diet, it is not too difficult to imagine stem-whales adopting this trait under restrictive ecological pressures. While fossil stem-cetaceans are numerous and well documented, the ancestry of the 'river horse' has been quite the enigma with ghost lineages remaining between the known anthracothere lineages and the oldest fossil hippopotamus. However, the fossil material described in the Nature Communications publication may help to bridge this paleozoological gap.